Contoh Soal Dan Penyelesaian Program Linier
Menggunakan Garis Selidik
Cara ini lebih simple dibandingkan dengan metode uji titik pojok tetapi memerlukan alat bantu berupa penggaris atau benda pipih yang lurus.
Dalam soal biasanya sudah tertera keterangan dari garis selidik,kalau tidak ditulis didalam soal bisanya sudah tertera didalam gambar.Didalam metode penyelesaian menggunakan garis selidik titik terdekat dengan garis selidik adalah nilai minimumnya dan titik terjauh dari garis selidik adalah nilai maksimumnya.
Contoh Soal:
Daerah yang diarsir adalah penyelesaian dari suatu program linier. Dengan garis selidik awal,nilai maksimum yang mungkin terjadi adalah ...
Jawaban:
Lihat! Garis yang berwana Biru(garis selidik) garis tersebut bisa kita ubah menjadi fungsi obyektif atau fungsi sasaran. Terdapat 2 titik yang membuat garis tersebut yaitu (0,2) dan (5,0).
Maka terbentuklah fungsi obyektif f = 2x + 5y. Menggunakan keterangan diatas bahwa titik yang paling dekat dengan garis selidik adalah nilai minimum sedangkan titik pojok yang paling jauh adalah nilai maksimum. Walaupun begitu masih ada titik pojok yang belum ditemukan yaitu titik perpotongan antara 2 garis didalam graifik. Untuk mencarinya lihatlah Grafik dan penjelasannya berikut:
Pada akhirnya akan menghasilkan Grafik Program Linier sebagai berikut:
Cara ini lebih simple dibandingkan dengan metode uji titik pojok tetapi memerlukan alat bantu berupa penggaris atau benda pipih yang lurus.
Dalam soal biasanya sudah tertera keterangan dari garis selidik,kalau tidak ditulis didalam soal bisanya sudah tertera didalam gambar.Didalam metode penyelesaian menggunakan garis selidik titik terdekat dengan garis selidik adalah nilai minimumnya dan titik terjauh dari garis selidik adalah nilai maksimumnya.
Contoh Soal:
Daerah yang diarsir adalah penyelesaian dari suatu program linier. Dengan garis selidik awal,nilai maksimum yang mungkin terjadi adalah ...
Jawaban:
Lihat! Garis yang berwana Biru(garis selidik) garis tersebut bisa kita ubah menjadi fungsi obyektif atau fungsi sasaran. Terdapat 2 titik yang membuat garis tersebut yaitu (0,2) dan (5,0).
Pola a -b |
Maka terbentuklah fungsi obyektif f = 2x + 5y. Menggunakan keterangan diatas bahwa titik yang paling dekat dengan garis selidik adalah nilai minimum sedangkan titik pojok yang paling jauh adalah nilai maksimum. Walaupun begitu masih ada titik pojok yang belum ditemukan yaitu titik perpotongan antara 2 garis didalam graifik. Untuk mencarinya lihatlah Grafik dan penjelasannya berikut:
Pada akhirnya akan menghasilkan Grafik Program Linier sebagai berikut:
Ada tiga titik pojok,dapat dilihat dari
ketiga titik yang paling jauh adalah (10,0) jika kita menarik garis lurus sampai menyentuh ketiga titik atau kita dapat melihatnya secara langsung bahwa yang paling jauh adalah titik (10,0),jika memang begitu langsung disubtitusikan ke fungsi obyektif
f
= 2x + 5y
f = 2x + 5y dengan titik (10,0)
f = 2 × 10 + 5 × 0
f = 20 + 0
f = 20
jadi,titik yang memuat nilai maksimum adalah titik (10,0) yang memiliki nilai 20.
f = 2 × 10 + 5 × 0
f = 20 + 0
f = 20
jadi,titik yang memuat nilai maksimum adalah titik (10,0) yang memiliki nilai 20.
Komentar
Posting Komentar